Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In therapeutic antibody design, achieving a balance between optimizing binding affinity subject to multiple constraints, and sequence diversity within a batch for experimental validation presents an important challenge. Contemporary methods often fall short in simultaneously optimizing these attributes, leading to ineffi- ciencies in experimental exploration and validation. In this work, we tackle this problem using the latest developments in constrained latent space Bayesian op- timization. Our methodology leverages a deep generative model to navigate the discrete space of potential antibody sequences, facilitating the selection of diverse, high-potential candidates for synthesis. We also propose a novel way of training VAEs that leads to a lower dimensional latent space and achieves excellent per- formance under the data-constrained setting. We validate our approach in vitro by synthesizing optimized antibodies, demonstrating consistently high binding affini- ties and preserved thermal stability.more » « less
-
Bayesian optimization (BayesOpt) is a gold standard for query-efficient continuous optimization. However, its adoption for drug design has been hindered by the discrete, high-dimensional nature of the decision variables. We develop a new approach (LaMBO) which jointly trains a denoising autoencoder with a discriminative multi-task Gaussian process head, allowing gradient-based optimization of multi-objective acquisition functions in the latent space of the autoencoder. These acquisition functions allow LaMBO to balance the explore-exploit tradeoff over multiple design rounds, and to balance objective tradeoffs by optimizing sequences at many different points on the Pareto frontier. We evaluate LaMBO on two small-molecule design tasks, and introduce new tasks optimizing \emph{in silico} and \emph{in vitro} properties of large-molecule fluorescent proteins. In our experiments LaMBO outperforms genetic optimizers and does not require a large pretraining corpus, demonstrating that BayesOpt is practical and effective for biological sequence design.more » « less
-
Abstract Machine learning-augmented materials design is an emerging method for rapidly developing new materials. It is especially useful for designing new nanoarchitectured materials, whose design parameter space is often large and complex. Metal-agent dealloying, a materials design method for fabricating nanoporous or nanocomposite from a wide range of elements, has attracted significant interest. Here, a machine learning approach is introduced to explore metal-agent dealloying, leading to the prediction of 132 plausible ternary dealloying systems. A machine learning-augmented framework is tested, including predicting dealloying systems and characterizing combinatorial thin films via automated and autonomous machine learning-driven synchrotron techniques. This work demonstrates the potential to utilize machine learning-augmented methods for creating nanoarchitectured thin films.more » « less
An official website of the United States government

Full Text Available